來寶網Logo

熱門詞:生物顯微鏡 水質分析儀 微波消解 熒光定量PCR 電化學工作站 生物安全柜

山東博科
現在位置华东15选5浙江风采网>行業專用>生命科學儀器>生命科學儀器>BYOSENS LYTE96 THE FIRST PORTABLE LABEL-FREE MICROPLATE READER
BYOSENS LYTE96 THE FIRST PORTABLE LABEL-FREE MICROPLATE READER
BYOSENS LYTE96 THE FIRST PORTABLE LABEL-FREE MICROPLATE READER
  • BYOSENS LYTE96 THE FIRST PORTABLE LABEL-FREE MICROPLATE READER

态度华东15选5推荐: BYOSENS LYTE96 THE FIRST PORTABLE LABEL-FREE MICROPLATE READER

华东15选5浙江风采网 www.hdnka.com 產品報價:詢價

更新時間:2019/4/2 12:09:54

地:德國

牌:BYOSENS

號: BYOSENS LYTE96

廠商性質: 生產型,貿易型,服務型,

公司名稱: 世聯博研(北京)科技有限公司

產品關鍵詞: BYOSENS LYTE96   便攜式無標記酶標儀  

348
訪問人數
0
累計評論


王榮 : (18618101725) (18618101725)

(聯系我時,請說明是在來寶網上看到的,謝謝?。?/b>


簡單介紹新一代無標記酶標儀 BYOSENS LYTE96第一臺便攜式無標記酶標儀  該lyte96是第一款便攜式無標記酶標儀。根據康寧Epic系統它被設計為讀出96孔板,并進行了廣泛的細胞化驗。結合無線連接和集成電池結合,lyte96的緊湊的結構使得它完全移動并易于在液體處理系統集成。 The next generation label-free reader BYOSENS LYTE96 THE

第一臺便攜式無標記酶標儀,BYOSENS LYTE96 PORTABLE LABEL-FREEMICROPLATE READER的詳細介紹



BYOSENS LYTE96第一臺便攜式無標記酶標儀(便攜微孔板檢測器)

 


 

LYTE96便攜式無標記酶標儀(便攜微孔板檢測器)是基于康寧Epic系統設計的,可進行一系列細胞內試驗的96孔微孔板讀出設備。lyte96將無線連接和集成電池結合放置到一個緊湊的結構中,使得它方便移動和易于整合進液體處理系統。主要是對系列廣泛的生物反應進行檢測,如信號轉導、細胞凋亡、細胞毒素,貼壁、增殖和擴散等。

lyte96無標記便攜生物傳感器的工作原理是基于折射波導光柵光學生物傳感器。傳感器結構由一個三層系統:玻璃基板、薄膜光波導薄膜與光柵結構,和細胞/生物分子層。當寬譜帶光照射時,生物傳感器反映光的特定波長是接近傳感器表面折射率的靈敏函數。通過 Epic系統測量細胞內的粘合物事件或細胞內蛋白質運動引起反射光的波長偏移。形成一系列波長偏移、波長、強度、時間之間的函數來進行分析。

lyte96無標記便攜生物傳感器的優勢:

移動性: lyte96創新設計之處是給使用者帶來了極大的靈活性。緊湊的結構結合了無線連接和集成的電池使lyte96方便移動。這使得它對于研究人員和開發人員來說成為一個完美的分析工具。

易用性: lyte96簡化了研發實驗室中的過程。實驗開始時不需要復雜的預置,直觀輔助的軟件保證了高水平的易用性。由于專利技術體系,lyte96幾乎是免費維護。

數據分析:根據已建立的康寧Epic系統,高敏性的lyte96可進行寬光譜的細胞內試驗,從開始試驗到幾天的時間都可以提供實時數據以便研究。

 

 

 

 

 

 

 

 

 

 

1. 萊特96無標記便攜生物傳感器

 

 

2.測量原理示意圖

 

1:在增殖試驗中,用lyte96實時監測細胞數量,發現細胞數目和傳感器表面的質量是成正比的。微孔板和lyte96放置在加濕的培養箱內通過藍牙無線連接電腦。經典增殖試驗中,A431細胞加入到孔中,記錄37?C的細胞生長。

 

2:動態質量再分配(DMR)的測定

像許多其他的信號檢測,GPCR測定動態質量再分配過程中(DMR)是由lyte96無標記傳感器測定的。和A431細胞緩激肽試驗一樣,這個試驗是在室溫下進行。得到的EC500.45 nm,這類似于從文獻的結果。

參考文獻:

Nazirizadeh, Y. et al. Intensity interrogation near cutoff resonance for label-free cellular profiling. Sci. Rep. 6, 24685 (2016).

 

French, J. B. et al. Spatial colocalization and functional link of purinosomes with mitochondria. Science 351, 733 (2016).

 

Camp, N. D. et al. Dynamic mass redistribution reveals diverging importance of PDZ-ligands for G protein-coupled receptor pharmacodynamics. Pharmacological. Research, 105, 13-21 (2016).

 

Klein, A. B., Nittegaard-Nielsen, M., Christensen, J. T., Al-Khawaja, A., & Wellendorph, P. Demonstration of the dynamic mass redistribution label-free technology as a useful cell-based pharmacological assay for endogenously expressed GABAA receptors. Med. Chem. Commun., 7, 426–432 (2016).

 

Klepac, K. et al. The Gq signalling pathway inhibits brown and beige adipose tissue.Nat. Commun. 7, 10895 (2016).

 

Hamamoto, A., Kobayashi, Y. & Saito, Y. Identification of amino acids that are selectively involved in Gi/o activation by rat melanin-concentrating hormone receptor 1. Cell. Signal27, 818–827 (2015).

 

Navarro, G. et al. Orexin – Corticotropin-Releasing Factor Receptor Heteromers in the Ventral Tegmental Area as Targets for Cocaine. J. Neurosci. 35, 6639–6653 (2015).

 

Wang, J. et al. RSC Advances danshen using a label-free cell phenotypic assay. RSC Adv. 5, 25768–25776 (2015).

 

Rex, E. B. et al. Phenotypic Approaches to Identify Inhibitors of B Cell Activation. J. Biomol. Screen. 20, 876–886 (2015).

 

Vinals, X. et al. Cognitive Impairment Induced by Delta9- tetrahydrocannabinol Occurs through Heteromers between Cannabinoid CB 1 and Serotonin 5-HT 2A Receptors. PLOS Biol., e1002194 (2015).

 

Fjellstr?m, O. et al. Novel Zn 2+ Modulated GPR39 Receptor Agonists Do Not Drive Acute Insulin Secretion in Rodents. PLoS One, 0145849 (2015).

 

Shridhar, N. et al. The experimental power of FR900359 to study Gq-regulated biological processes. Nat. Commun. 6, 10156 (2015).

 

Marada, S. et al. Functional Divergence in the Role of N-Linked Glycosylation in Smoothened Signaling. PLOS Genet., 1005473 (2015).

 

Brust, T. F., Hayes, M. P., Roman, D. L. & Watts, V. J. New functional activity of aripiprazole revealed: robust antagonism of D2 dopamine receptor-stimulated Gβγ signaling. Biochem Pharmacol. 93, 85–91 (2015).

 

Camp, N. D. et al. Individual protomers of a G protein-coupled receptor dimer integrate distinct functional modules. Cell Discov. 1, 15011 (2015).

 

 Beckert, U. et al. Biochemical and Biophysical Research Communications cNMP-AMs mimic and dissect bacterial nucleotidyl cyclase toxin effects. Biochem. Biophys. Res. Commun. 451, 497–502 (2014).

 

Otte, M. et al. CXCL14 is no direct modulator of CXCR4. FEBS Lett. 588, 4769–4775 (2014).

 

Liebscher, I. et al. A Tethered Agonist within the Ectodomain Activates the Adhesion G Protein-Coupled Receptors GPR126 and GPR133. Cell Rep. 9, 2018–2026 (2014).

 

Fang, Y. Label-Free Cell Phenotypic Drug Discovery. Comb. Chem. High Throughput Screen. 17, 566–578 (2014).

 

Fang, Y. Label-free drug discovery. Front. Pharmacol. 5, 1–8 (2014).

 

Febles, N. K., Ferrie, A. M. & Fang, Y. Label-Free Single Cell Kinetics of the Invasion of Spheroidal Colon Cancer Cells through 3D Matrigel. Anal. Chem. 86, 8842–8849 (2014).

 

Lee, M. Y. et al. A Comparison of Assay Performance Between the Calcium Mobilization and the Dynamic Mass Redistribution Technologies for the Human Urotensin Receptor. Assay Drug Dev. Technol. 12, 361–368 (2014).

 

Balenga, N. A. et al. Heteromerization of GPR55 and cannabinoid CB2 receptors modulates signalling. Br. J. Pharmacol. 171, 5387–5406 (2014).

 

Carter, R. L. et al. Dynamic mass redistribution analysis of endogenous b -adrenergic receptor signaling in neonatal rat cardiac fibroblasts. Pharma. Res. Per.2, 1–16 (2014).

 

Teutsch, C. et al. Detection of free fatty acid receptor 1 expression?: the critical role of negative and positive controls. Diabetologia 57, 776–780 (2014).

 

Meister, J. et al. The G Protein-coupled Receptor P2Y 14 Influences Insulin Release and Smooth Muscle Function in Mice. J. Biol. Chem. 289, 23353–23366 (2014).

 

Andradas, C. et al. Targeting CB 2 -GPR55 Receptor Heteromers Modulates Cancer Cell Signaling. J. Biol. Chem. 289, 21960–21972 (2014).

 

Schmitz, J. et al. Dualsteric Muscarinic Antagonists ? Orthosteric Binding Pose Controls Allosteric Subtype Selectivity. J. Med. Chem. 57, 6739–6750 (2014).

 

Mackenzie, A. E. et al. The Antiallergic Mast Cell Stabilizers Lodoxamide and Bufrolin as the First High and Equipotent Agonists of Human and Rat GPR35. Mol. Pharmacol.85, 91–104 (2014).

 

Chen, X. et al. Rational Design of Partial Agonists for the Muscarinic M1 Acetylcholine Receptor. J. Med. Chem. 58, 560–576 (2014).

 

Ferrie, A. M., Zaytseva, N. & Fang, Y. Divergent Label-free Cell Phenotypic Overexpressed b2-Adrenergic Receptors. Sci. Rep. 4, 3828 (2014).

 

Orgovan, N. et al. Dependence of cancer cell adhesion kinetics on integrin ligand surface density measured by a high-throughput label-free resonant waveguide grating biosensor. Sci. Rep. 4, 4034 (2014).

 

Sun, H. et al. Label-free cell phenotypic profiling decodes the composition and signaling of an endogenous ATP-sensitive potassium channel. Sci. Rep. 4, 4934 (2014).

 

 Sundstr?m, L., Greasley, P. J., Engberg, S., Wallander, M. & Ryberg, E. Succinate receptor GPR91 , a G ai coupled receptor that increases intracellular calcium concentrations through PLC b. FEBS Lett. 587, 2399–2404 (2013).

 

Fang, Y. Troubleshooting and deconvoluting label-free cell phenotypic assays in drug discovery. J. Pharmacol. Toxicol. Methods 67, 69–81 (2013).

 

Ahmedat, A. S. et al. Pro-fibrotic processes in human lung fibroblasts are driven by an autocrine / paracrine endothelinergic system. Br. J. Pharmacol. 168, 471–487 (2013).

 

Morse, M., Sun, H., Tran, E., Levenson, R. & Fang, Y. Label-free integrative pharmacology on-target of opioid ligands at the opioid receptor family. BMC Pharmacol. Toxicol. 14, 1–18 (2013).

 

Online, V. A., Ferrie, A. M., Wang, C. & Fang, Y. Integrative Biology identifies an intracellular signalling wave mediated through the b2-adrenergic receptor. Integr. Biol. 5, 1253–1261 (2013).

 

Christiansen, E. et al. Discovery of a Potent and Selective Free Fatty Acid Receptor 1 Agonist with Low Lipophilicity and High Oral Bioavailability. J. Med. Chem. 56, 982–992 (2013).

 

Hennig, D. et al. Novel Insights Into Appropriate Encapsulation Methods for Bioactive Compounds Into Polymers: A Study With Peptides and HDAC Inhibitors.Macromol. Biosci. 1–12 (2013).

 

Deng, H., Sun, H. & Fang, Y. Label-free cell phenotypic assessment of the biased agonism and efficacy of agonists at the endogenous muscarinic M3 receptors. J. Pharmacol. Toxicol. Methods 68, 1–24 (2013).

 

Zaytseva, N. et al. Resonant waveguide grating biosensor-enabled label-free and fluorescence detection of cell adhesion. Sens. Actuators B Chem. 1–17 (2013).

 

Zhao, H., French, J. B., Fang, Y. & Benkovic, S. J. The purinosome, a multi-protein complex involved in the de novo biosynthesis of purines in humans. Chem. Commun. (Camb). 49, 1–17 (2013).

 

Cho, Y. & Baldán, A. Quest for New Biomarkers in Atherosclerosis. Mo. Med. 110, 325–330 (2013).

 

Hennen, S. et al. Decoding Signaling and Function of the Orphan G Protein– Coupled Receptor GPR17 with a Small-Molecule Agonist. Sci. Signal. 6, 1–33 (2013).

 

Deng, H. & Fang, Y. The Three Catecholics Benserazide, Catechol and Pyrogallol are GPR35 Agonists. Pharmaceuticals 6, 500–509 (2013).

 

Deng, H., Wang, C. & Fang, Y. Label-free cell phenotypic assessment of the molecular mechanism of action of epidermal growth factor receptor inhibitors. RSC Adv. 3, 10370–10378 (2013).

 

Schrage, R. et al. Agonists with supraphysiological efficacy at the muscarinic M2 ACh receptor. Br. J. Pharmacol. 169, 357–370 (2013).